Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Haiyang Gao,^a Qing Wu^a and Seik Weng Ng^b*

^aInstitute of Polymer Science, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.052 wR factor = 0.179 Data-to-parameter ratio = 19.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-[2-(2,6-Dimethylphenylamino)phenylmethyleneamino]-1,3-diisopropylbenzene

The *ortho*-disubstituted aromatic ring in the title compound, $C_{27}H_{32}N_2$, is twisted by 76.1 (1)° with respect to the isopropylsubstituted ring and by 89.3 (1)° with respect to the methylsubstituted ring. The amino N atom is linked intramolecularly to the imino N by a hydrogen bond $[N \cdots N = 2.686 (2) \text{ Å}]$. Received 5 January 2004 Accepted 7 January 2004 Online 17 January 2004

Comment

Multidentate complexes of the late transition metals show high catalytic activity for olefin polymerization (Ittle et al., 2000); for the nickel complexes in particular, the salicylaldehyde-imine type of Schiff base complexes are particularly useful catalysts (Wang et al., 1998; Younkin et al., 2000). A plethora of such Schiff bases and their complexes has been structurally authenticated. The Schiff bases are readily synthesized by condensing the salicylaldehyde reagent with a primary amine; on the other hand, an arylamino benzaldehyde-arylimine has yet not been documented in the Cambridge Structural Database (Allen, 2002). The Ni complex of the present compound (Fig. 1) is being investigated for catalytic activity in a continuation of related investigations (He, Yao, Luo, Zhang, Liu et al., 2003; He, Yao, Luo, Zhang & Wu, 2003). The arylamino entity is introduced into the benzaldehyde-2,6-diisopropylphenylimine system by the nucleophilic displacement of the ortho-substituted fluoride (Sprung, 1940).

The title compound, (I), is envisaged as consisting of three aromatic portions, a dimethylphenyl part that is linked to the phenylene part through the amino group [N2-C19 = 1.368 (2) Å and N2-C20 = 1.424 (2) Å], along with a diisopropylphenyl part that is connected to the phenylene part through the methyleneimine group [N1-C1 = 1.418 (2) Å and N1-C13 = 1.265 (2) Å]. The aromatic rings in the two portions are severely twisted with respect to the phenylene ring, probably to avoid crowding by their 2,6-substituents. The amino group is linked to the imino group by an intramolecular hydrogen bond $[N \cdots N = 2.686 (2) \text{ Å}]$.

Experimental

 \bigcirc 2004 International Union of Crystallography Printed in Great Britain – all rights reserved A xylene (15 ml) solution of 2-fluorobenzaldehyde (3.28 ml, 3.83 g, 30.9 mmol) and 2,6-diisopropylphenylamine (6.42 ml, 6.03 g,

Figure 1

ORTEPII (Johnson, 1976) plot of (I); displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

34.0 mmol) was stirred for 2 h, after which magnesium sulfate was added. The mixture was filtered and the yellow solution cooled to 263 K to furnish 4.49 g of yellow $2,6-(C_3H_7)_2C_6H_3N$ — CH-2C₆H₄F; the removal of the solvent yielded an additional 1.43 g of the compound (approximate yield of 70%). Elemental analysis calculated for C₁₉H₂₂FN: C 80.53, H 7.83, N 8.94%; found: C 80.37, H 7.54, N 4.73%. An *n*-hexane solution (6.5 ml) of *n*-butyllithium (2.6 M) was added to 2,6-dimethylaniline (2.2 ml, 2.10 g, 1.74 mmol) dissolved in THF (40 ml) at 199 K; after the addition, the solution was allowed to warm to room temperature over several hours. It was transferred into a solution of $C_{19}H_{22}NF$ (4.40 g, 1.55 mmol) dissolved in thf (50 ml). The mixture was stirred for 1 h and was then guenched with water (20 ml). The desired product was extracted with n-hexane and the solvent removed to give an oil. The compound was obtained as paleyellow crystals upon recrystallization from methanol in 50% yield. Elemental analysis calculated for $C_{27}H_{32}N_2$: C 84.26, H 8.26, N 7.28%; found C 84.34, H 8.47, N 7.11%.

Crystal data

C ₂₇ H ₃₂ N ₂	$D_x = 1.079 \text{ Mg m}^{-3}$
$M_r = 384.55$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 854
a = 12.013 (2) Å	reflections
b = 7.789(1) Å	$\theta = 2.7 - 23.1^{\circ}$
c = 25.542 (3) Å	$\mu = 0.06 \text{ mm}^{-1}$
$\beta = 97.802 \ (3)^{\circ}$	T = 293 (2) K
$V = 2367.9 (5) \text{ Å}^3$	Block, yellow
Z = 4	$0.49 \times 0.48 \times 0.43 \text{ mm}$
Data collection	

Bruker SMART 1K area-detector
diffractometer
φ and ω scans
Absorption correction: none
13131 measured reflections
5184 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.179$ S = 1.015184 reflections 268 parameters H atoms treated by a mixture of independent and constrained refinement 2681 reflections with $l > 2\sigma(l)$ $R_{int} = 0.024$ $\theta_{max} = 27.1^{\circ}$ $h = -15 \rightarrow 13$ $k = -4 \rightarrow 9$ $l = -32 \rightarrow 32$

$w = 1/[\sigma^2(F_o^2) + (0.0863P)^2]$
+ 0.2352P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table	1		

Selected geometric parameters (Å, $^\circ).$

N1-C1	1.418 (2)	C13-C14	1.444 (2)
N1-C13	1.265 (2)	C14-C15	1.392 (2)
N2-C19	1.368 (2)	C14-C19	1.413 (2)
N2-C20	1.424 (2)	C15-C16	1.367 (3)
C1-C6	1.393 (3)	C16-C17	1.374 (3)
C1-C2	1.400 (3)	C17-C18	1.362 (3)
C2-C3	1.381 (3)	C18-C19	1.396 (2)
C2-C7	1.507 (3)	C20-C25	1.390 (3)
C3-C4	1.369 (4)	C20-C21	1.391 (3)
C4-C5	1.365 (4)	C21-C22	1.378 (3)
C5-C6	1.381 (3)	C21-C26	1.496 (3)
C6-C10	1.523 (3)	C22-C23	1.352 (4)
C7-C8	1.502 (4)	C23-C24	1.366 (4)
C7-C9	1.511 (4)	C24-C25	1.394 (3)
C10-C12	1.487 (4)	C25-C27	1.498 (3)
C10-C11	1.513 (4)		
C1-N1-C13	121.4 (2)	C13-C14-C19	122.8 (2)
C19-N2-C20	123.8 (2)	C15-C14-C19	118.4 (2)
C2-C1-C6	121.8 (2)	C14-C15-C16	121.9 (2)
C6-C1-N1	120.0 (2)	C15-C16-C17	119.3 (2)
C2-C1-N1	118.0 (2)	C16-C17-C18	120.9 (2)
C1-C2-C3	117.6 (2)	C17-C18-C19	121.0 (2)
C1-C2-C7	120.6 (2)	N2-C19-C14	120.3 (2)
C3-C2-C7	121.8 (2)	N2-C19-C18	121.1 (2)
C2-C3-C4	121.4 (2)	C18-C19-C14	118.6 (2)
C3-C4-C5	119.9 (2)	C21-C20-C25	121.9 (2)
C4-C5-C6	121.7 (2)	C25-C20-N2	119.3 (2)
C1-C6-C5	117.6 (2)	C21-C20-N2	118.8 (2)
C1-C6-C10	122.0 (2)	C20-C21-C22	118.1 (2)
C5-C6-C10	120.4 (2)	C20-C21-C26	121.1 (2)
C2-C7-C8	112.3 (2)	C22-C21-C26	120.8 (2)
C2-C7-C9	114.2 (2)	C21-C22-C23	121.1 (2)
C8-C7-C9	110.5 (2)	C22-C23-C24	120.7 (2)
C6-C10-C11	112.2 (2)	C23-C24-C25	121.0 (2)
C6-C10-C12	112.4 (2)	C20-C25-C24	117.2 (2)
C11-C10-C12	111.9 (3)	C20-C25-C27	120.9 (2)
N1-C13-C14	124.7 (2)	C24-C25-C27	121.9 (2)
C13-C14-C15	118.9 (2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots N1$	0.89 (2)	1.98 (2)	2.686 (2)	136 (2)

The H atoms were placed at calculated positions in the ridingmodel approximation (C—H = 0.93 Å for the H atoms on Csp^2 atoms, C—H = 0.98 Å for methine H atoms and 0.96 Å for methyl H atoms). The displacement parameters of the H atoms were set to 1.2 times those of the equivalent isotropic displacement parameters of the carrier atoms, except for the methyl H atoms, for which the factor was 1.5. The N-bound H atom was located and refined freely. Furthermore, the torsion angles of the two methyl groups directly bound to the aromatic ring were refined.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and the University of Malaya for supporting this work.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- He, X.-H., Yao, Y.-Z., Luo, X., Zhang, J., Liu, Y., Zhang, L. & Wu, Q. (2003). Organometallics, 22, 4952–4957.
- He, X.-H., Yao, Y.-Z., Luo, X., Zhang, L. & Wu, Q. (2003). Acta Cryst. E59, m1196–m1197.
- Ittle, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169-1203.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sprung, M. M. (1940). Chem. Rev. 26, 297-338.
- Wang, C., Friedrich, S., Younkin, T. R., Li, R. T., Grubbs, R. H., Bansleben, D. A. & Day, M. W. (1998). Organometallics, 17, 3149–3151.
- Younkin, T. R., Connor, E. F., Henderson, J. I., Friedrich, S. K., Grubbs, R. H. & Bansleben, D. A. (2000). *Science*, **287**, 460–461.